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Dynamic Traffic Assignment
Genetic Algorithms Approach

ADEL W. SADEK, BRIAN L. SMITH, AND MICHAEL J. DEMETSKY

Virginia Transportation Research Council, 530 Edgemont Road, Char-
lottesville, Va. 22903.

Real-time route guidance is a promising approach to alleviating con-
gestion on the nation’s highways. A dynamic traffic assignment model
is central to the development of guidance strategies. The artificial intel-
ligence technique of genetic algorithms (GAs) is used to solve a
dynamic traffic assignment model developed for a real-world routing
scenario in Hampton Roads, Virginia. The results of the GA approach
are presented and discussed, and the performance of the GA program is
compared with an example of commercially available nonlinear pro-
gramming (NLP) software. Among the main conclusions is that GAs
offer tangible advantages when used to solve the dynamic traffic assign-
ment problem. First, GAs allow the relaxation of many of the assump-
tions that were needed to solve the problem analytically by traditional
techniques. GAs can also handle larger problems than some of the
commercially available NLP software packages.

Transportation departments throughout the United States are mak-
ing significant investments in computer software as they deploy
Intelligent Transportation Systems (ITSs). Much of this software
supports such traffic management activities as incident detection,
traffic monitoring, and control of variable message signs (VMSs).
Very little software is available to help traffic managers provide
route guidance information to travelers.

Considerable research is being conducted to develop route guid-
ance tools. An efficient dynamic traffic assignment model is central
to the development of route guidance strategies. Given the travel
demand, a dynamic traffic assignment model is used to estimate the
time-varying traffic volume on each road segment (link) of the net-
work, which will result in an optimal use of the region’s transporta-
tion resources. The model can then be used to develop effective
routing strategies. These can be relayed to the public by devices
such as VMS, highway advisory radio (HAR), or personal comput-
ers. The solution of dynamic traffic assignment models, however,
has proven to be difficult, and previous attempts have introduced a
number of simplifying assumptions to allow the model to be solved
by conventional algorithmic techniques (1–5).

In this paper, the artificial intelligence (AI) technique known as
genetic algorithms (GAs) is used to solve a dynamic traffic assign-
ment model developed for a real-world routing scenario in the
Hampton Roads region of Virginia. The paper starts by describing
the dynamic assignment model developed by Merchant and
Nemhauser (1), which was selected to illustrate the feasibility of
the GA approach, and then formulates a dynamic model for the
Hampton Roads area. The development of the GA program, and
the major issues associated with the application of GAs to dynamic
traffic assignment problems, are addressed next, followed by the
results of the GA program.

MERCHANT AND NEMHAUSER DYNAMIC
TRAFFIC ASSIGNMENT MODEL

Merchant and Nemhauser (M-N) were among the first researchers to
consider the dynamic traffic assignment problem (1). The M-N model
addressed the case of single-destination networks and a system-
optimal assignment formulation. The planning horizon was divided
into equal time intervals of suitably small length {i|i = 0,1, . . . ,I}.
Each arc of the network {j|j = 1,2, . . . ,J} was assigned a cost func-
tion (hij) and an exit function gj. When x is the amount of traffic on
arc j at the beginning of time period i, it was assumed that a cost hij(x)
is incurred and an amount of traffic gj(x) exits from the arc. The two
functions hij(x) and gj(x), however, must satisfy certain requirements.
First, to represent traffic flow accurately, the function gi(x) must be
nondecreasing, continuous, and concave. The function hij(x), on the 
other hand, should be nonnegative, nondecreasing, continuous, and
convex, to represent the disutility associated with congestion.

Denoting the number of vehicles that are admitted onto the arc j
during the ith period by dij (the decision variables), and assuming that
the external inputs are known for each time period, Fi(q), and that the
volume admitted onto a link cannot leave that link in the same time
interval, the fundamental state equations can be written as

The flow conservation equations at each node are given as

where A(q) is the set of arcs pointing out of node q, and B(q) is the
set of arcs pointing into the node.

Therefore, the full model can be written as

minimize

subject to

• The state equations (Equation 1),
• The conservation constraints (Equation 2),
• The initial condition

• The nonnegativity constraints
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The model is a discrete time, nonlinear, and nonconvex model. It is
interesting that the model does not explicitly impose capacity
constraints on the arc flows.

MODEL FORMULATION

As previously mentioned, the model was developed for a specific
routing challenge near Hampton Roads, Virginia. This routing sce-
nario (Figure 1) involves westbound traffic originating from
Virginia Route 44 and destined for Interstate 64 in Newport News,
Virginia. Essentially, the problem is how to allocate drivers
between the Hampton Roads Tunnel and the Monitor-Merrimac
Bridge Tunnel.

Defining Network To Be Modeled

The first step in formulating the model was to define the highway
network considered for modeling. This network had to include the
major facilities in the area as well as the location of those access/exit
points where it was believed that a significant change in the traffic
volume occurs. The network selected is shown in Figure 2.

As can be seen, the network comprises the Interstate system in
the region, I-64, I-264, I-464, and I-664. The network, besides the
intersection of Route 44 with I-64 (Point O1) where traffic is origi-
nating, has two major access points: (a) Point O2 where I-564 inter-
sects the network (this point connects the network to a major naval
base); and (b) Point O3, where Terminal Avenue intersects I-664
(this point connects the network to an international port). In total,
there are nine links, the lengths of which, as obtained from the
Virginia Department of Transportation’s mileage tables, are given
in Figure 2. For simplicity, all links were assumed to consist of two
lanes per direction.

Traffic Volumes

Dynamic traffic assignment models assume that the originating traf-
fic demand as well as all external inputs are known for the different

time intervals throughout the planning horizon. Therefore, they need
to be linked to real-time traffic data and integrated with a tool for
short-term traffic prediction. Researchers at the Virginia Trans-
portation Research Council (VTRC) and the University of Virginia
have recently developed a nonparametric regression model well-
suited for predicting traffic based on current and historical volumes
(6). In this case, the VTRC model will be linked to the Suffolk traf-
fic management system (TMS) traffic sensors to provide the input
data for the dynamic traffic assignment model.

Unfortunately, the TMS was not yet on-line at the time this study
was conducted. The only traffic information available was in the
form of 15-min counts for the two tunnels. These counts were used
as guides in assuming the traffic demand for the different time
intervals.

Exit Function

The functional form for the exit function selected is

where A and B are regression parameters. This form, which closely
resembles the free-flow regime of Edie’s two-regime traffic model
(7), satisfies the different requirements of an exit function since it is
nonnegative, nondecreasing, and concave. Moreover, it satisfies the
assumption that the gradient is 0 for large x’s.

Ideally, to calibrate this function, traffic volume data from the
Hampton Roads network should have been used. However, these
data were not available and data collected from Santa Monica
Freeway in California were used instead (7). Using nonlinear
regression analysis, the following relationship between the flow, Q,
in vehicles per hour per lane, and the density, d, in vehicles per mile
per lane, was developed:

Since two-lane links have been assumed, Equation 7 can be written as

where

Q9 = number of vehicles exiting from a particular link (per hour),
x = number of vehicles on that link, and
l = length of link (mi).

As previously mentioned, the M-N model assumes that the volume
admitted onto a link cannot leave that link in the same time interval.
This means that the selected length of the time interval, T, has to 
be short enough for such a condition to be satisfied. According to
Papageorgiou (4), this translates into

that is,

A time interval length of 3 min was assumed. The exit function was
then derived by appropriately scaling Equation 8 to give

T < <( . * / ) . ( )4 91 50 4400 0 056 9hr,  or 3.36 min

T lj< minimum ( * / )50 4400

Q x l′ = 44 00 1 50 8* { exp[( ) ]} ( )− − / /

Q d= 2200 1 25 7* [ exp( )] ( )− − /

Y A Bx= − −[ exp( )]1

FIGURE 1 Hampton Roads area network.
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FIGURE 2 Network selected for modeling.

where g is the number of vehicles exiting in 3 min. Equation 10 is
the exit function used in this paper.

Model

To solve the model, a period of 45 min was used, corresponding to
15 intervals of 3 min each. The objective function minimizes the
total number of vehicle periods spent on the network and can be
expressed as

Minimize

It should be mentioned, however, that since we are adopting a GA
approach, any functional form of the objective function can be used.

Minimizing the objective function (Equation 11) is subject to five
groups of constraints; state equations, conservation equations, initial
conditions, upper bounds, and nonnegativity.

State Equations Constraints

For nine links and 15 time intervals, there are 135 state equations con-
straints. A sample of these constraints for time interval 0 is given here

x x x l d13 03 03 3 03219 1 50 14= +− − −. [ exp ( . )] ( )/

x x x l d12 02 02 2 02219 1 50 13= +− − −. [ exp ( . )] ( )/

x x x l d11 01 01 1 01219 1 50 12= +− − −. [ exp ( . )] ( )/

xijji ∑∑ ( )11

g x l= − −219 1 50 10* { exp[( ) ]} ( )/ /

Conservation Equations Constraints

For each time interval, there are six conservation equations—that is,
there are a total of 90 conservation constraints. A sample of these
equations for time interval 0 is shown here.

where O10, O20, and O30 are the external traffic volume inputs at
access points O1, O2, and O3; and the g’s are the exit functions.

d g x09 08 26= 3 +0O ( ) ( )

d g x g x08 04 07 25= +( ) ( ) ( )

d g x g x07 05 06 24= +( ) ( ) ( )

d d g x04 05 03 23+ = ( ) ( )

d g x02 01 22= 2 +0O ( ) ( )

d d d01 03 06 21+ + = 10O ( )

x x x l d19 09 09 9 09219 1 50 20= +− − −( )[ ]. exp . ( )/

x x x l d18 08 08 8 08219 1 50 19= +− − −( )[ ]. exp . ( )/

x x x l d17 07 07 7 07219 1 50 18= +− − −. [ exp ( . )] ( )/

x x x l d16 06 06 6 06219 1 50 17= +− − −. [ exp ( . )] ( )/

x x x l d15 05 05 5 05219 1 50 16= +− − −. [ exp ( . )] ( )/

x x x l d14 04 04 4 04219 1 50 15= +− − −. [ exp ( . )] ( )/
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Initial Conditions

The Hampton Roads Tunnel typically carries more traffic than the
Monitor-Merrimac Tunnel. To reflect this Links 1 and 2 (Figure 2)
were assumed to be initially loaded to a uniform traffic density of
31.1 veh/km (50 veh/mi), whereas an 18.6-veh/km (30-veh/mi)
traffic density was assumed for the other seven links. The initial
number of vehicles on each link (the x0j’s) was then computed by
multiplying the traffic density by the link length, resulting in the
following set of constraints:

Upper Bounds on Control Variables, dij, and State
Variables xij

Merchant and Nemhauser did not impose explicit bounds on the link
capacities in order to facilitate the solution of their model. In the cur-
rent study, to more realistically capture the traffic dynamics, upper
bounds were explicitly imposed on the control and state variables.

Upper bounds on the control variables were determined from
roadway capacity considerations, which state that the maximum
flow rate is 2,200 veh/hr/lane. For two lanes and 3-min intervals,
this corresponded to an upper bound of 219 on the control variables,
resulting in the following set of constraints:

The upper bounds on the state variables were calculated assuming a
jam density of 80.8 veh/km/lane (130 veh/mi/lane), giving rise to the
following constraints:

It is noted that in the absence of these constraints, the volume that the
model admits onto a link may exceed the actual capacity of that link.

Nonnegativity Constraints

Finally, we have the nonnegativity constraints

The next section describes the GA program that was designed to
solve this model.

GENETIC ALGORITHM PROGRAM

Overview

GAs are stochastic algorithms whose search methods are based on
the principle of evolution and survival of the fittest. GAs use a
vocabulary borrowed from natural genetics. One would speak about

x i I jij ≥ =0 0 1 1 2 9 32for and, , , , , , ( )K K=

d i I jij ≥ =0 0 1 1 1 2 9 31for and, , , , , , ( )K K− =

x l i I jij j≤ ( ) =2 130 0 1 1 1 2 9 30. . , , , , , , ( )for andK K− =

d i I jij ≤ =219 0 1 1 1 2 9 29for and, , , , , , ( )K K− =

x l jj j0 30 3 9 28= . , , ( )for = K

x l jj j0 50 1 2 27= . ( )for and=

individuals (sometimes called strings, or chromosomes) in a popu-
lation. Chromosomes are made of genes arranged in linear succes-
sion. The basic idea of the GA is quite simple. During each iteration,
t, the procedure maintains a population of individuals, P(t). Each
individual or chromosome represents a potential solution to the
problem under consideration. The procedure starts with a randomly
generated initial population of chromosomes (a set of potential solu-
tions). Each solution, xi

t, is evaluated to give some measure of its fit-
ness (the evaluatestep). Then, a new population (iteration t + 1) is
formed by selecting the more fit individuals (the selectstep). Some
members of this new population undergo alterations by means of
genetic operations (typically referred to as crossoverand mutation
operations) to form new solutions (the alter step). After some num-
ber of generations (iterations of the select, alter, and evaluate steps),
it is expected that the algorithm converges to a near-optimum
solution (8).

Traditional Versus Modern Approaches to GA Design

Traditionally, GAs have used a binary representation scheme, in
which the solution was represented in the form of a binary string
(e.g., 10010001111000). The crossover operator was designed to
combine the features of two parent chromosomes to form two off-
spring by swapping corresponding segments of the parents. For
example, if the parents are represented by five-dimensional vectors
(a1, b1, c1, d1, e1) and (a2, b2, c2, d2, e2), then crossing the chromo-
somes after the second gene would produce the offspring (a1, b1, c2,
d2, e2) and (a2, b2, c1, d1, e1). The intuition behind the applicability
of the crossover operator is information exchange between differ-
ent potential solutions. Mutation, on the other hand, arbitrarily
selected one or more genes of a chromosome. It then flipped the
gene into a 1 if it were a 0 and vice versa. The intuition behind the
mutation operator is the introduction of some extra variability into
the population.

Recently, however, it has become more and more apparent that
real-world problems cannot be handled with binary representations
and binary operators. In addition, every real-world domain has asso-
ciated domain knowledge that is of use when considering a trans-
formation of a solution. Consequently, the modern approach to GA
design is characterized by a departure from classical, bit-string GAs
toward the use of appropriate data structures, such as floating point
representations, and special genetic operators (8). In the current
study, the authors have adopted this modern view of GA design.

Constraints Handling

A major problem in applying GAs is that of constraints. Currently,
there are three main approaches for handling constraints in con-
nection with GAs. The first approach uses appropriate data struc-
tures and specially designed operators. The idea is to start with 
a feasible initial population and design genetic operators that 
maintain such feasibility. The second adopts a penalty function
approach. In this approach, potential solutions are generated 
without considering the constraints. Solutions that violate the con-
straints are then penalized by decreasing the goodness of the fitness
function. Several penalty functions have been proposed in recent
years. A paper by Michalewicz and Janikow provides an excellent
overview of these functions (9). Finally, the third approach uses
“decoders” or repair algorithms that either avoid building or repair
an illegal individual.
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In this paper a hybrid approach for constraint handling was
designed, combining features from all three approaches. The fol-
lowing section describes the details of the GA implementation to
solve the dynamic traffic assignment model formulated in the
previous section.

GA Implementation

Representation

Since every state xi+1j is a function of the previous state xij and a con-
trol variable dij, and since, the initial state x0j is given, the objective
function will only depend on the control variables, the dij ’s. It
should also be noted that although there are nine dij ’s for each time
interval, in fact only three control variables need to be considered.
This is because once the di1 and the di3 variables are selected, the di6

is determined automatically from the fact that the sum of the di1, di3,
and di6 must be equal to O1i (Figure 3a). Similarly, selecting di4

determines the value for di5 (Figure 3b). Finally, the values of di2,
di7, di8, and di9 are a function of the amount of traffic volume exit-
ing from the preceding links, and the external inputs O2i and O3i
(Figure 3c). The exit volumes are also decided once the values for
the di1, di3, and di4 variables are selected.

The developed GA program uses a real-value vector representa-
tion. Since 15 time intervals were considered and each had three
control variables, a potential solution to the problem would be
represented as a 45-element vector as follows:

u = (u1, u2, u3, u4, u5, u6, . . . , u45), corresponding to the control
variables, (d0,1, d0,3, d0,4, d1,1, d1,3, d1,4, . . . , d14,4)

Initial Population and Constraint Handling

The basic idea in creating the initial population was first to deter-
mine the upper and lower bounds for each control variable, and then
to select a random number between these bounds for this variable.
As mentioned, the lower bound for these control variables (the dij ’s)
is 0, since we cannot have a negative flow, while the upper bound
is 219.

Therefore,

0 219 354≤ ≤di ( )

0 219 343≤ ≤di ( )

0 219 331≤ ≤di ( )

Also, as previously discussed,

that is,

Imposing the bounds on the di6 means that

that is,

and

that is,

Similarly,

that is,

Imposing the bounds on the di5 means that

that is,

and

that is,

d f di i4 1 3 219 41≥ ( ) −− , ( )

f d di i−( ) − ≤1 3 4 219,

d f di i4 1 3 40≤ ( )− , ( )

f d di i−( ) − ≥1 3 4 0,

d f d di i i5 1 3 4 39= −( ) −, ( )

d d g x f di i i i4 5 3 1 3+ = ( ) = ( )−, ,

d di i i1 3 1 219 38+ ≥ −O ( )

O1 2191 3i i id d− ≤−

d di i i1 3 1 37+ ≤ O ( )

O1 01 3i i id d− ≥−

d d di i i i6 1 31 36= O − − ( )

d d di i i i1 3 6 1+ + = O

FIGURE 3 Interdependency among control variables.
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The procedure for population initialization thus consists of the
following steps:

1. Randomly select the di1 from between 0 and 219.
2. Calculate the lower and upper bounds for the di3 using inequal-

ities 34, 37, and 38; randomly select the di3 from between these
bounds.

3. Calculate the lower and upper bounds for the di4 using inequal-
ities 35, 40, and 41; randomly select the di4 from between these
bounds.

This approach for initializing the population will guarantee that
the control variables (namely, di1, di3, and di4) are within the
bounds, as well as the dij ’s for links that share a node with a con-
trol variable, namely, di6 and di5. There is no guarantee, however,
that this will hold for the other dij ’s that do not share a node with
a control variable (i.e., di2, di7, di8, and di9). In fact, calculating the
appropriate bounds for the control variables in such a case is
rather complicated, since the bound is a function of a combination
of the values assigned to the control variables in previous time
intervals. The same problem applies to the constraints on the state
variables.

To avoid the need for such complex calculations, a hybrid
approach for constraint handling was adopted. The basic idea was
to divide the upper-bound constraints on the variables into two
groups:

• Group 1, consisting of the constraints on the dij ’s that are part
of the control vector (di1, di3, and di4), as well as those that share a
node with a control variable (di6 and di5); and

• Group 2, consisting of the constraints on the other dij’s, namely,
di2, di7, di8, and di9, as well as the constraints on the state variables.

The Group 1 constraints are treated as before by creating an initial
“feasible” population with respect to these constraints and attempt-
ing to maintain this partial feasibility. For Group 2, the constraints
were handled using a penalty function approach. The penalty func-
tion used was a simplified version of the function used by
Michalewicz and Attia (10). This function is given as

where

f (X) = evaluation function;
CA = set of active constraints;

fk = max {0, ak (X)} for inequalities of form ak (X) ≤ 0
|bk(X)| for equalities of form bk(X) = 0

r = parameter with a value > 0.

Michalewicz and Attia propose iteratively reducing the value of
r, with the best solution from one iteration serving as a starting point
for the next. In the current implementation, however, the authors
used just a single value for r of 0.10.

Evaluation Function and Selection Scheme

The objective function for the dynamic traffic assignment model
served as the evaluation function for the GA program. The selection
scheme used to select the more fit individuals from a population was

5

eval X r f X r f Xkk CA
, ( )( ) ( ) ( )

∈∑= + 1/2 2 42

the commonly used roulette wheel procedure. Michalewicz (8) has
described the details of this stochastic selection procedure.

Genetic Operators

The operators used in the GA program were specially designed to
maintain the partial feasibility of the solution with respect to the
Group 1 constraints, and therefore they are quite different from the
classical operators.

Mutation Operator When designing the mutation operator,
special attention was given to the fact that the domain of the problem
was dynamic. That is, the value of the ith component of the solution
vector was always in some dynamic range, where the bounds
depended on the values of the other elements of the vector and the set
of inequalities. To accommodate this factor, the mutation operator
was designed to proceed in the following fashion:

1. Randomly select a gene replace it by a random number
selected from between that gene’s bounds.

2. Update the bounds for the genes that follow the gene selected
in Step 1.

3. Check the values of the genes following the mutated gene to see
if each is within its new range as determined from Step 2. If any
variable is outside such a range, reset its value to that of the boundary.

Crossover Operator The crossover operator is of the whole
arithmetical crossover type (8). It is defined as a linear combination
of two vectors. That is, if the two vectors u1 and u2 are to be crossed,
the resulting offspring is ρ . u1 + (1 − ρ) . u2. The value r is a
randomly generated number in the range [0 . . . 1].

A basic characteristic of a convex space, S, is that for any two
points in S, the linear combination is also a point in S. Therefore, had
the solution space been a convex set, the whole arithmetical
crossover operator would have been guaranteed to always generate
a legitimate offspring. But since the solution space for this problem
was not necessarily convex, the crossover operator was designed to
check for any violation and to repair such a violation by resetting the
gene’s value to that of the boundary. It should be noted, however,
that for all the runs performed in the study, the crossover operator
was never seen to generate any violation.

DISCUSSION OF RESULTS

The GA model, illustrated in Figure 4 as a flow chart, was coded in
C++ and used to solve the formulated dynamic assignment model
for the demand volumes given in Table 1. The program required 
210 sec to run on an IBM-PC80486 for the following set of values
for the control parameters:

• Population size = 30,
• Probability of crossover = 0.25,
• Probability of mutation = 0.03, and
• Number of generations = 1,000.

A value of 45,009 vehicle periods spent on the network was
obtained for the objective function. Figure 5 shows the resulting tra-
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FIGURE 4 Basic structure of GA program.

jectories of the three control variables di1, di3, and di4. As can be seen,
in general the variable di1 was greater than di3, which in turn was
greater than di4. This appears quite reasonable if the following facts
are considered.

The network modeled essentially had four alternative paths leading
from the origin (Route 44) to the destination:

1. (Link 1 → Link 2) with a total length of 19.94 mi (32.09 km),
2. (Link 3 → Link 4 → Link 8 → Link 9) with a total length of

34.25 mi (55.1 km),

3. (Link 3 → Link 5 → Link 7 → Link 8 → Link 9) with a total
length of 39.03 mi (62.8 km), and

4. (Link 6 → Link 7 → Link 8 → Link 9) with a total length of
36.08 mi (58.06 km).

In this solution, the variable di1 corresponds to the traffic volume
following Path 1 to the destination, while the di3 variable represents
the volume taking either Path 2 or 3. Now, since Path 1 is shorter than
either Paths 2 or 3, one should expect the model would attempt to
route as many vehicles as possible through Path 1, therefore di1

should be greater than di3.
To further check the plausibility of the model, it was assumed

that an incident took place on Link 2, and that this incident has
reduced the link’s exit capacity to 25 percent of its original value.
Under such circumstances, one should expect that the model would
attempt to divert traffic from Path 1 onto alternative paths. Figure 6
shows that this is exactly what happened. The total traffic volume
admitted onto Path 1 over the 45-min period in this case is less than
the volume for the case of no incidents. It is noted, however, that
because of the oscillations in the value of the control variable, the
number of vehicles for some time intervals during an incident could
be at the same or higher level as during normal conditions, despite
the fact that the total volume over the planning horizon is less. If
desired, these dynamic oscillations could be smoothed or even elim-
inated by adding a term in the objective function that penalizes such
time variations (4).

Varying GA Control Parameters

To study the effect of the GA control parameters on the algorithm
performance, a series of experiments were performed with the
mutation and crossover probabilities varied as follows:

1. The mutation probability was set at 0.01, 0.03, and 0.05; and
2. The crossover probability was set at 0.25, 0.50, and 0.80.

The number of generations was fixed at 500 generations and a pop-
ulation size of 30 was used. Table 2 gives the fitness value for the
solution obtained in each case. As can be seen, the best result was
obtained when the mutation rate was set at 0.03 and the crossover
at 0.25.

Execution Time Characteristics of GA Model

As previously mentioned, the execution time for the previous exam-
ple on an IBM-PC80486 was 210 sec. A study of the effect of the
number of generations on the solution quality, however, revealed
that no significant improvement was achieved beyond 300 genera-
tions. Since the execution time is a linear function of the generation

TABLE 1 Demand Volumes at Three Access Points During 15 Time Intervals (vehicles/3-min intervals)
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number, running the program for 250 generations would require
only 52.5 sec on a 486 PC. This is reasonable.

To better assess the execution time characteristics of the GA
program, four demand patterns were considered, and the number
of generations after which there was no significant improvement
in the solution quality was recorded for each case. The results are
shown here along with the time required to run the program for the
corresponding number of generations.

Case Number of Generations Execution Time (sec)

1 330 69.3
2 30 6.3
3 285 59.9
4 182 38.2

As can be seen, the maximum execution time required was 
69.3 sec, which is again adequate.

GA Program Versus Traditional Nonlinear
Programming Software

To better assess the performance of the GA program, it was com-
pared with a commercially available nonlinear programming (NLP)
software, Microsoft Excel Solver, which uses a gradient descent
approach to solve NLP problems (11).

The first observation was the fact that a dynamic traffic assign-
ment problem could be too large for some of the commercially

available software. The authors were forced to reduce the size of
the original 15 time interval problem to a 6 time interval problem
to be able to use Solver. This simplified problem was then solved
using Solver as well as by running the GA program for a 1,000
generations. The same travel demand volumes and the same model
formulations were used in both cases. The results obtained are
summarized here:

Excel Solver GA Program
(1,000 generations)

Objective function value 17,691 17,697
Execution time (sec) 370 105

As can be seen, the GA program yielded similar results in less
than a third of the time required by Solver. It should be noted that
the 17,697 solution was reached by the GA program after only 
120 generations. Running the GA for 120 generations would require
less than 13 sec on a 486 PC.

CONCLUSIONS AND FUTURE DIRECTIONS

This study has demonstrated the feasibility of using GAs to solve
dynamic network flow modeling problems. The conclusions are as
follows:

1. The GA approach offers tangible advantages when used to
solve dynamic traffic assignment problems. First, it permits the

FIGURE 5 Control variables trajectories.

FIGURE 6 di1 under incident and no-incident trajectories.
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relaxation of many of the assumptions necessary to solve the prob-
lem analytically by traditional techniques. For example, the GA
approach allows for using any mathematical form for the cost and
exit function. Moreover, the approach allows for explicitly imposing
capacity constraints on the arc flows.

2. The hybrid approach for constraint handling adopted by the
current study appears promising in terms of both solution quality
and coding complexity.

3. The execution time of the GA program for the range of
demand patterns considered in the study was reasonable.

4. The GA program can handle larger problems than some of the
commercially available NLP software.

5. When compared with Microsoft Excel Solver, an NLP tool,
the GA program was much faster and yielded comparable results.

6. Since GA performance is affected by the values selected for 
the control parameters, running a set of experiments at first is
recommended to arrive at the most appropriate values for these
parameters.

There are several opportunities for further research in this topic.
Some of the most important future directions that the VTRC
research team plans to pursue given here:

1. The present study has considered only models that represent a
system-optimal assignment; the authors also intend to formulate
user-equilibrium models. Such an extension should be rather easy,
since the GAs approach is capable of dealing with any functional
form of the objective function.

2. The dynamic traffic assignment model formulated in this
study addressed the case of a single-destination network. The

authors plan to develop a GA program for solving the more general
case of a multiorigin, multidestination network.

3. Once the Suffolk TMS is on-line, the authors intend to refine
the exit functions on the basis of the real-world data collected from
the TMS’s sensors. It is also intended to link the program to the
short-term prediction module developed by the VTRC. This will
result in a complete system for real-time traffic routing in the
Hampton Roads area.
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